
INFRARED REMOTE CONTROL TRANSMITTER

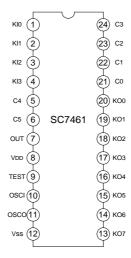
DESCRIPTION

The SC7461 is a remote control transmitter utilizing CMOS Technology specially designed for infrared applications. It is capable of controlling 32 function keys and 3 double keys. SC7461 is housed in 24 pins, SO Package and provides 13 bits Custom Code.

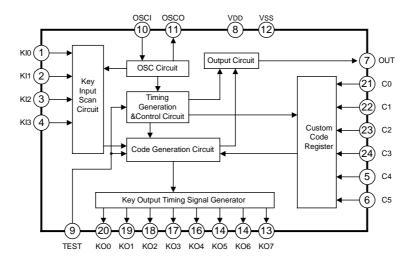
FEATURES

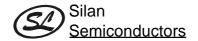
- * CMOS Technology
- * Low Power Consumption
- * 32+3 Function Keys
- * Least External Components
- * Wide range of operating voltage: VDD=1.8~5.5V
- * Double key operation(No order of priority given)
- * On-Chip Oscillator can be constructed using an externally connected ceramic resonator
- * Up to 64 Custom Codes may be selected externally for SC7461

APPLICATIONS


- * TV and VCR
- * Audio Equipment
- * Audio Cassette Deck
- * Air Conditioner
- * Multi-Media DVD Player

ORDERING INFORMATION


Valid Part Number	Package	Custom Code in Mask ROM
SC7461-100	SOP-24	C6~C12=1000000
SC7461-101	SOP-24	C6~C12=0000000
SC7461-103	SOP-24	C6~C12=0010000
SC7461-104	SOP-24	C6~C12=1010000

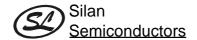

PIN CONFIGURATION

BLOCK DIAGRAM

----- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD -----

ABSOLUTE MAXIMUM RATING (Tamb=25°C,unless otherwise specified)

Characteristic	Symbol	Symbol Description		Unit
Maximum Supply Voltage	VDD(max)	VDD	Vss-0.3~10	V
Input Voltage	VIN	Each Input pin	Vss-0.3~VDD+0.3	V
Output Voltage	Vout		Vss-0.3~VDD+0.3	V
Output Current	lout	OUT	-35	mA
Allowable Power Dissipation	Pd(max)	Ta<=85°C	150	mW
Storage Temperature	T _{stg}		-50~+125	°C
Operating Temperature	Topr		-40~+85	°C


ELECTRICAL CHARACTERISTICS (Tamb=25°C, V_{DD}=3.0V,unless otherwise specified)

	,	· · · · · · · · · · · · · · · · · · ·			,	
Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Operating Supply Current	IDD	Key ON, Output: no load			1	mA
Quiescent Supply Current	IDS	All keys OFF, OSC stops			1	μΑ
	Іон1	VDD=1.8V, VOH=1.0V		-8		mA
High Level Output Current	Іон2	VDD=3.0V, VOH=2.0V		-25		mA
High Level Output Voltage	Voн	Iон=1mA	2.4			٧
Low Level Output Voltage	Vol	IoL=1mA			0.2	V
Output OFF-State Leakage Current	loff				1	μΑ
Custom Code High Level Input Current	lін	VIN= VDD			1	μΑ
Custom Code Low Level Input Current	lı∟	VIN= VSS	-1			μΑ
Input Floating Voltage	ViF			0.1V _{DD}		V
Input Pull-Down Resistance	Rin		75	100	125	kΩ

RECOMMENDED OPERATING CONDITIONS

(Tamb=25°C, fosc=455kHz,unless otherwise specified)

(· · · · · · · · · · · · · · · · · ·	/			
Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	V _{DD}	1.8	3.0	5.5	V
High Level Input Voltage	Vih	0.7VDD		VDD	V
Low Level Input Voltage	VIL	Vss		0.3VDD	V
Oscillation Frequency	fosc	400	455	500	KHz

PIN DESCRIPTION

Pin No.	Symbol	I/O	Description
1~4	KI0~KI3	I	Key Input Pins
7	OUT	0	Output Pins For Transit LED Drive
8	VDD		Power Supply
9	TEST	I	LSI Test Pin. This pin is normally set to High State or Floating.
10	OSCI	I	Oscillator Input Pin
11	osco	0	Oscillator Output Pin
12	Vss		Power Supply Vss=GND
13~20	KO7~KO0	0	Key Scan Timing Signal Output Pins
21~24 5,6	C0~C3 C4~C5	I	Custom Code Input Pins. Capable of externally setting 6 out of 13 bits for custom coding.

FUNCTIONAL DESCRIPTION

1.OSCILLATION CIRCUIT

A self-biased type amplifier is housed by a CMOS Inverter Method. Thus, an oscillation circuit can be constructed by connecting a ceramic resonator. Please refer to Figure 4 for the oscillation circuit diagram.

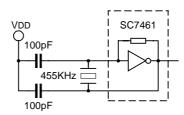
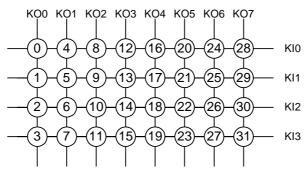


FIGURE 1. OSCILLATION CIRCUIT DIAGRAM


Unless the keys are being operated, the oscillation is normally stopped. Thus, power consumption is considerably reduced.

2.KEY INPUT

A total of 32 keys can be connected by Key Inputs--Kl0~Kl3 and Timing Signals--K00~KO7. Double Key Operation is possible for only Key No.20 in combination with the other keys connected to the KO5 line, namely: Key No.21, 22 or 23. Thus, only the following key combinations may be used for the double key operation:


- 1).Key Nos.20 and 21
- 2).Key Nos.20 and 22
- 3).Key Nos.20 and 23

---- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD ----

There is no order of priority given in key input. This means that keys designated for the double keying operation may be pressed in any sequence. When two keys (designated for the double key operation) are pressed simultaneously, a series of pulse is outputted according to each key input. Pressing other keys that are NOT intended for the double key operation do NOT generate any output.

The Key Matrix is given in the following diagram.

FIGURE 2. KEY MATRIX

3.DOUBLE KEY OPERATION

Double Key Operation is useful for tape deck recording operation. The following table shows the Key Data corresponding to the double keys pressed. Also refer to the Key Input Section.

Key	D0	D1	D2	D3	D4	D5	D6	D7
K20+K21	1	0	1	0	1	1	0	0
K20+K22	0	1	1	0	1	1	0	0
K20+K23	1	1	1	0	1	1	0	0

NOTE: Key Data--D6 and D7 may be preset to "0", "1" by mask option.

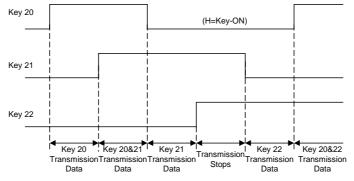


FIGURE 3. TRANSMISSION DATA DIAGRAM

—— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD ——

When any of the double key combinations (Key No.20&21, Key No.20&22 and Key No.20&23) are pressed:

- 1).D5 is set to "1"
- 2). No Key Input Sequence is needed to perform the Double Key Operation

4.SC7461 DATA FRAME

A SC7461 Data Frame consists of 42 bits, namely: 13 bits Custom Code (C0~C12), 8 bits Key Data (D0~D7), and their respective Inverse Codes. Please refer to the figure below.

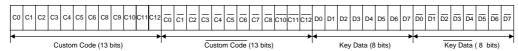


FIGURE 4. SC7461 DATA FRAME

CUSTOM CODE

The Custom Code consists of 13 bits, namely: C0~C12. 7 bits--C6~C12-- are fixed by the on-chip ROM while 6 bits--C0~C5--are pin-settable. SC7461 provides up to 64 custom codes that may be selected externally without any diode requirement. Please refer to the illustration below.

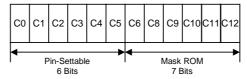
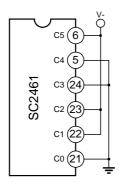



FIGURE 5. SC7461 CUSTOM CODE

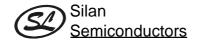
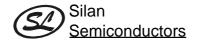

For example: Given the following setting,

FIGURE 6. EXAMPLE CUSTOM CODE SETTING

then, the Custom Codes $C0\sim C5$ will have the following values: C0=0, C1=1, C2=1, C3=0, C4=0, C5=1.

— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD ——



KEY DATA

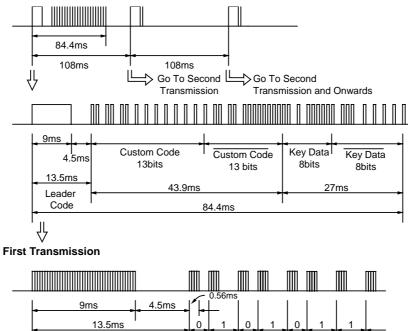
The Key Data has 8 bits (D0~D7) and has the following Key Data Codes. D6 and D7 may be preset to "0", "1".

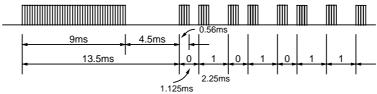
Key	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0
5	1	0	1	0	0	0	0	0
6	0	1	1	0	0	0	0	0
7	1	1	1	0	0	0	0	0
8	0	0	0	1	0	0	0	0
9	1	0	0	1	0	0	0	0
10	0	1	0	1	0	0	0	0
11	1	1	0	1	0	0	0	0
12	0	0	1	1	0	0	0	0
13	1	0	1	1	0	0	0	0
14	0	1	1	1	0	0	0	0
15	1	1	1	1	0	0	0	0
16	0	0	0	0	1	0	0	0
17	1	0	0	0	1	0	0	0
18	0	1	0	0	1	0	0	0
19	1	1	0	0	1	0	0	0
20	0	0	1	0	1	0	0	0
21	1	0	1	0	1	0	0	0
22	0	1	1	0	1	0	0	0
23	1	1	1	0	1	0	0	0
24	0	0	0	1	1	0	0	0
25	1	0	0	1	1	0	0	0
26	0	1	0	1	1	0	0	0
27	1	1	0	1	1	0	0	0
28	0	0	1	1	1	0	0	0
29	1	0	1	1	1	0	0	0
30	0	1	1	1	1	0	0	0
31	1	1	1	1	1	0	0	0

----- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD -----

5.SC7461 TRANSMISSION CODE

The SC7461 transmission code consists of a leader code, 13 bits custom code, and 8 bits key data codes. The inverse code of both the custom and key data codes are also sent simultaneously; thus, allowing an extremely low error rate in the system configuration. Please refer to the following diagram.


FIGURE 13. REM OUTPUT CODES


The leader code consists of a 9ms carrier waveform followed by a 4.5ms OFF waveform. It is used as the leader for the following codes (Custom, Data and their respective inverse codes). Thus, when the reception is configured by a microcomputer, the time relationship between the reception detection and other processes can be managed efficiently. The code uses the PPM (Pulse Position Modulation) Method, with "1" and "0" differentiated by the time between pulses.

6.SC7461 TRANSMISSION WAVEFORM

The SC7461 Transmission Waveform illustrated below were derived from the time period for fosc=455KHz.

Second Transmission Onwards (Transmission is available only when key input continues)

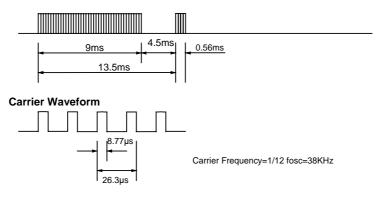
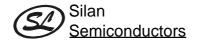



FIGURE 8. SC7461 TRANSMISSION WAVEFORM

- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD -----

TYPICAL APPLICATION CIRCUITS

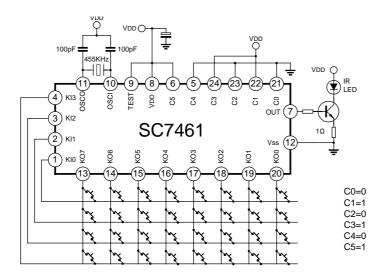
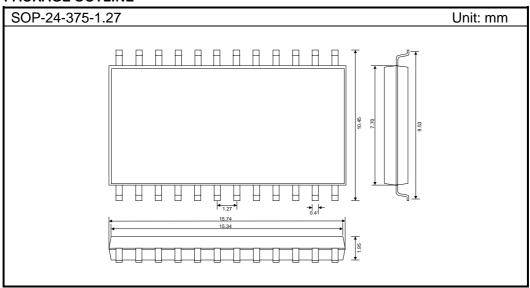



FIGURE 9. SC7461 APPLICATION CIRCUIT DIAGRAM

PACKAGE OUTLINE

----- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD -----